Production-Ready AI & Software Engineer¶
What's New
Preventing Arrow Errors in Diagrams with Mermaid Syntax Guidance - Preventing Arrow Errors in Diagrams with Mermaid Syntax Guidance
Introduction¶
The use of diagrams in technical documentation has become increasing... Read more ->
Introduction¶
The development of a blog agent requires careful consideration of several key facto... Read more ->
Introduction¶
When developing applications that integrate with external APIs, it is crucial... Read more ->
Introduction¶
The increasing demand for high-quality content has led to the dev... Read more ->
Introduction¶
The development of modern web applications often requir... Read more ->
Porto Agent is an innovative AI-powered blog and LinkedIn post generator that extracts knowledge from git... Read more ->
Introduction¶
The implementation of machine learning recommendation sy... Read more ->
Overview¶
I am Robi Dany Riupassa, a software engineer and AI specialist with proven expertise in building and deploying production-grade systems with comprehensive documentation, scalable infrastructure, and advanced AI/ML capabilities.
My work demonstrates:
- Production deployment expertise (Docker, Kubernetes, CI/CD)
- Multimodal AI capabilities (text, audio, video, image processing)
- Infrastructure orchestration (MinIO, Kafka, PostgreSQL, Redis, MongoDB)
- Comprehensive system documentation with architectural diagrams
- MLOps pipelines and automated model deployment
- Event-driven architectures and real-time data processing
Enterprise Production Systems¶
Media Platform - Advertising Context Protocol (AdCP)¶
A production-ready comprehensive media platform with AdCP integration for OTT streaming, broadcast management, content management, media asset management, and out-of-home advertising systems.
Production Capabilities:
graph LR
subgraph Storage["Storage and Delivery"]
MinIO["MinIO S3<br/>Multi-bucket"]
CDN["CDN<br/>Global delivery"]
Kafka["Kafka<br/>Event streaming"]
end
subgraph AI["Multimodal AI Extraction"]
MetaOrch["Metadata<br/>Orchestrator"]
NLPSvc["NLP Service<br/>Text analysis"]
VisionSvc["Vision Service<br/>CLIP + Detection"]
AudioSvc["Audio Service<br/>Whisper + Diarization"]
FeatureStore["Feature Store<br/>pgvector"]
end
subgraph Core["Core Services - NestJS"]
OTT["OTT Platform<br/>Next.js + Video.js"]
BMS["Broadcast Mgmt<br/>GEN21 BMS"]
CMS["Content Mgmt<br/>Strapi v4"]
MAM["Media Assets<br/>AI search"]
Recommendation["Recommendations<br/>3 ML strategies"]
end
subgraph AdCP["AdCP Integration"]
Gateway["AdCP<br/>Gateway"]
MediaBuy["Media Buy<br/>Protocol"]
Creative["Creative<br/>Protocol"]
Signals["Signals<br/>Protocol"]
end
CDN --> MinIO
MinIO -->|S3 Events| Kafka
Kafka --> MetaOrch
MetaOrch --> NLPSvc
MetaOrch --> VisionSvc
MetaOrch --> AudioSvc
NLPSvc --> FeatureStore
VisionSvc --> FeatureStore
AudioSvc --> FeatureStore
FeatureStore --> OTT
FeatureStore --> MAM
FeatureStore --> Gateway
CMS --> OTT
CMS --> BMS
CMS --> MAM
OTT --> Gateway
BMS --> Gateway
MAM --> Gateway
Gateway --> MediaBuy
Gateway --> Creative
Gateway --> Signals
classDef infraStyle fill:#FF9800,stroke:#E65100,stroke-width:2px
classDef aiStyle fill:#9C27B0,stroke:#6A1B9A,stroke-width:2px
classDef coreStyle fill:#2196F3,stroke:#1565C0,stroke-width:2px
classDef adcpStyle fill:#4CAF50,stroke:#2E7D32,stroke-width:2px
class MinIO,CDN,Kafka infraStyle
class MetaOrch,NLPSvc,VisionSvc,AudioSvc,FeatureStore aiStyle
class OTT,BMS,CMS,MAM,Recommendation coreStyle
class Gateway,MediaBuy,Creative,Signals adcpStyle
Technology Stack:
| Category | Technologies |
|---|---|
| Backend Services | NestJS microservices, TypeScript, Node.js 22 |
| Frontend | Next.js 14, React 18, Video.js player, Server-Side Rendering |
| Databases | PostgreSQL 16 + pgvector, Redis 7 |
| Content Management | Strapi v4 (headless CMS) - single source of truth |
| Event Streaming | Apache Kafka + Kafka UI |
| Storage & CDN | MinIO S3-compatible storage, Cloudflare R2 / BunnyCDN |
| AI/ML - Multimodal | NLP: spaCy, Hugging Face Transformers Vision: CLIP embeddings, scene detection, object recognition Audio: Whisper transcription, speaker diarization Vector Search: pgvector for semantic similarity |
| Media Processing | FFmpeg (video frame extraction, audio extraction, metadata) |
| Containerization | Docker Compose, multi-stage builds |
| Orchestration | Kubernetes manifests (deployments, services, ingress) |
| IaC | Terraform configurations |
| CI/CD | GitHub Actions workflows |
| Monitoring | Prometheus + Grafana |
Key Features:
- Event-Driven Architecture: S3 events trigger automatic metadata extraction pipeline via Kafka
- Multimodal AI Enrichment: Every uploaded content automatically enriched with NLP, vision, and audio features
- Feature Store: Centralized repository with pgvector for semantic similarity search across all content
- Semantic Search: AI-powered content discovery using vector embeddings
- Real-time Streaming: OTT platform with adaptive bitrate streaming
- Scalable Infrastructure: Microservices architecture with independent scaling
- Production Deployment: Complete Docker Compose setup, Kubernetes-ready
Documentation:
- Comprehensive architecture documentation (95KB+)
- Detailed service specifications for all 8 modules
- Mermaid architectural diagrams
- API specifications (OpenAPI 3.0)
- Deployment guides and infrastructure setup
- Technology decision documents
AI-Powered Help & QnA System¶
A production-ready enterprise-grade RAG (Retrieval-Augmented Generation) system with free-tier LLM APIs, comprehensive hybrid retrieval, and voice assistant capabilities.
Production Architecture:
graph TB
subgraph "Client Layer"
WebUI["React Web Interface"]
VoiceUI["GenTalk Voice Assistant - Audio recording and playback"]
end
subgraph "API Layer - FastAPI"
API["REST API - Health checks and monitoring"]
Session["Session Management"]
end
subgraph "RAG Orchestration"
RAG["RAG Orchestrator - Query processing"]
Router["Query Router - System detection BMS or CMS"]
end
subgraph "Retrieval Layer"
Dense["Dense Vector Search - pgvector HNSW indexing"]
Sparse["Sparse BM25 Search - pg_trgm native Postgres"]
RRF["RRF Fusion - Hybrid retrieval"]
Rerank["BGE Reranker Large - Cross-encoder scoring"]
end
subgraph "LLM Layer"
Primary["Cerebras Llama 70B - 1M tokens per day"]
Secondary["Gemini 2 Flash - 1500K tokens per day"]
Tertiary["DeepSeek R1 - Complex reasoning"]
Fallback["Groq or OpenRouter - Automatic fallback"]
end
subgraph "Storage Layer"
PG["PostgreSQL 16 with pgvector - 40K doc chunks indexed"]
Redis["Redis 7 - Response caching 75 percent hit rate"]
Embed["BGE-large-en - 1024-dim embeddings"]
end
WebUI --> API
VoiceUI --> API
API --> Session
Session --> RAG
RAG --> Router
Router --> Dense
Router --> Sparse
Dense --> RRF
Sparse --> RRF
RRF --> Rerank
Rerank --> Primary
Primary -.->|Fallback| Secondary
Secondary -.->|Fallback| Tertiary
Tertiary -.->|Fallback| Fallback
Primary --> Redis
Dense --> PG
Sparse --> PG
PG --> Embed
classDef clientStyle fill:#E1F5FE,stroke:#01579B,stroke-width:2px
classDef apiStyle fill:#FFF9C4,stroke:#F57F17,stroke-width:2px
classDef retrievalStyle fill:#F3E5F5,stroke:#4A148C,stroke-width:2px
classDef llmStyle fill:#E8F5E9,stroke:#1B5E20,stroke-width:2px
classDef storageStyle fill:#FFE0B2,stroke:#E65100,stroke-width:2px
class WebUI,VoiceUI clientStyle
class API,Session,RAG,Router apiStyle
class Dense,Sparse,RRF,Rerank retrievalStyle
class Primary,Secondary,Tertiary,Fallback llmStyle
class PG,Redis,Embed storageStyle
Technology Stack:
| Category | Technologies |
|---|---|
| Backend | FastAPI, Python 3.11+, Uvicorn, Pydantic |
| Frontend | React 18, Vite, Axios |
| Database | PostgreSQL 16 + pgvector extension |
| Caching | Redis 7 (75%+ cache hit rate) |
| Embeddings | BGE-large-en-v1.5 (1024-dim, MIT license) |
| Reranking | BGE-reranker-large (cross-encoder) |
| LLM Providers | Cerebras (Llama 70B), Google Gemini 2.0 Flash, DeepSeek R1, Groq, OpenRouter |
| RAG Framework | Custom RAG orchestrator with hybrid retrieval |
| Voice Processing | GenTalk voice assistant with audio recording |
| Containerization | Docker Compose |
| Orchestration | Kubernetes manifests (StatefulSet, ConfigMap, Secrets) |
| Testing | Pytest with coverage reporting |
| Observability | Health checks, cache stats, token usage tracking |
Key Features:
- Hybrid Retrieval: Dense vector search (pgvector) + Sparse BM25 (pg_trgm) with RRF fusion
- Multi-Provider LLM Fallback: Automatic failover across 5 free-tier providers
- Voice Assistant: GenTalk with audio recording and playback capabilities
- System Detection: Automatic BMS/CMS detection with manual override
- Real-time Citations: Transparent source attribution for all answers
- Production-Grade Caching: Redis-based response caching (75%+ cost reduction)
- Comprehensive Documentation: 40K+ lines of real documentation indexed
- Quality Metrics: Accuracy ≥75%, Citation coverage ≥90%, Hallucination rate ≤5%
Performance Benchmarks:
- API Health Check: <50ms
- Embedding Generation: 100-200ms
- Vector Search: 50-100ms
- End-to-end RAG: 2-5s
- Cache Hit Rate: 35-50%
Broadcast Analytics System - MLOps Platform¶
A production-grade enterprise MLOps platform for broadcast analytics with AI-powered insights, predictive modeling, schedule optimization, and intelligent LLM chat interface.
Production MLOps Pipeline:
graph LR
subgraph Data["Data Layer"]
PG["PostgreSQL 16<br/>ML Registry"]
Mongo["MongoDB 7<br/>Chat History"]
Redis["Redis 7<br/>LLM Cache"]
end
subgraph ML["ML Pipeline"]
Loader["Data<br/>Loader"]
Preprocess["Feature<br/>Engineering"]
Training["Model<br/>Training"]
Evaluation["Model<br/>Evaluation"]
Registry["ML<br/>Registry"]
end
subgraph LLM["LLM Agent"]
Agent["LangChain<br/>Agent"]
LLMPrimary["Groq<br/>Llama 70B"]
LLMSecondary["Gemini<br/>2 Flash"]
LLMFallback["OpenRouter<br/>Fallback"]
Cache["Response<br/>Cache"]
end
subgraph API["API Layer"]
APINode["REST API<br/>OpenAPI"]
Predictor["Prediction<br/>Service"]
Optimizer["Schedule<br/>Optimizer"]
Export["Data<br/>Export"]
end
subgraph UI["Frontend"]
Dashboard["Monitoring<br/>Dashboard"]
Chat["LLM Chat<br/>Interface"]
Charts["Interactive<br/>Charts"]
end
subgraph Monitor["CICD and Monitoring"]
GHA["GitHub<br/>Actions"]
Prometheus["Prometheus<br/>Metrics"]
Grafana["Grafana<br/>Dashboards"]
Alertmanager["Alert<br/>Manager"]
end
Loader --> Preprocess
Preprocess --> Training
Training --> Evaluation
Evaluation --> Registry
Registry --> PG
APINode --> Predictor
APINode --> Optimizer
APINode --> Export
Predictor --> Registry
Agent --> LLMPrimary
LLMPrimary -.->|Fallback| LLMSecondary
LLMSecondary -.->|Fallback| LLMFallback
Agent --> Cache
Cache --> Redis
Agent --> Mongo
Dashboard --> APINode
Chat --> Agent
Charts --> APINode
APINode --> Prometheus
Prometheus --> Grafana
Prometheus --> Alertmanager
classDef dataStyle fill:#FFE0B2,stroke:#E65100,stroke-width:2px
classDef mlStyle fill:#E1BEE7,stroke:#4A148C,stroke-width:2px
classDef llmStyle fill:#C8E6C9,stroke:#1B5E20,stroke-width:2px
classDef apiStyle fill:#BBDEFB,stroke:#0D47A1,stroke-width:2px
classDef frontendStyle fill:#F8BBD0,stroke:#880E4F,stroke-width:2px
classDef cicdStyle fill:#FFF9C4,stroke:#F57F17,stroke-width:2px
class PG,Mongo,Redis dataStyle
class Loader,Preprocess,Training,Evaluation,Registry mlStyle
class Agent,LLMPrimary,LLMSecondary,LLMFallback,Cache llmStyle
class API,Predictor,Optimizer,Export apiStyle
class Dashboard,Chat,Charts frontendStyle
class GHA,Prometheus,Grafana,Alertmanager cicdStyle
Technology Stack:
| Category | Technologies |
|---|---|
| Backend | FastAPI, Python 3.12+, SQLAlchemy, Motor (async MongoDB) |
| Frontend | React 18, Chart.js, Axios, GEN21 theme |
| Databases | PostgreSQL 16 (ML registry), MongoDB 7.0 (sessions), Redis 7.0 (caching) |
| ML Frameworks | Scikit-learn, XGBoost, CatBoost, Gradient Boosting, MLP, ElasticNet |
| LLM Framework | LangChain agents with 7 specialized tools |
| LLM Providers | Groq (Llama 70B), Google Gemini 2.0 Flash, OpenRouter |
| Optimization | Genetic Algorithm-based schedule optimizer |
| Containerization | Docker Compose, multi-stage Dockerfile |
| Orchestration | Kubernetes (deployments, services, ingress, secrets) |
| CI/CD | GitHub Actions (testing, build, deployment) |
| Monitoring | Prometheus 2.48.0 + Grafana 10.2.2 + Alertmanager |
| Logging | Loki + Promtail for log aggregation |
| Testing | Pytest with coverage reporting |
Key Features:
- Automated ML Pipeline: 24 trained models (6 algorithms × 4 target variables) with auto-selection based on R² > 0.7
- Model Registry: Database-backed versioned model storage with automated deployment
- LLM-Powered Analytics: Natural language query system with multi-provider support and automatic fallback
- Response Caching: Redis-based LLM response cache achieving 75%+ cost reduction
- Schedule Optimization: Genetic Algorithm-based optimizer with custom constraints and real-time predictions
- Comprehensive Monitoring: Industrial-grade stack with Prometheus, Grafana dashboards, and automated alerting
- Multi-Database Architecture: PostgreSQL for structured data, MongoDB for sessions, Redis for caching
- CI/CD Automation: GitHub Actions for automated testing, building, and deployment
- Professional Documentation: Complete guides for development, production deployment, and MLOps practices
Performance Metrics:
- API Latency: 200-500ms average, <2s at P95
- Database Queries: <100ms
- Cache Access: <10ms
- Model Inference: 50-100ms single prediction
- Schedule Optimization: 2-5 seconds
Recommendation Systems Research & Exploration¶
A comprehensive research project implementing and comparing YouTube Two-Tower, Netflix Foundation, and Hybrid recommendation architectures. Features interactive exploration apps and systematic Grid Search optimization.
System Architectures Compared:
flowchart LR
subgraph YT["YOUTUBE: Two-Tower"]
YT1[User] & YT2[Item] --> YT3[Embed] --> YT4[ANN] --> YT5[Rank]
end
subgraph NF["NETFLIX: Foundation"]
NF1[History] --> NF2[Transformer] --> NF3[Multi-Task] --> NF4[Recs]
end
subgraph HY["HYBRID: Combined"]
HY1[Two-Tower] --> HY2[Transformer] --> HY3[CF] --> HY4[Rank]
end
classDef ytStyle fill:#FF6B6B,stroke:#C92A2A
classDef nfStyle fill:#E50914,stroke:#B20710
classDef hyStyle fill:#4CAF50,stroke:#2E7D32
class YT1,YT2,YT3,YT4,YT5 ytStyle
class NF1,NF2,NF3,NF4 nfStyle
class HY1,HY2,HY3,HY4 hyStyle
Grid Search Optimization Results:
| System | Combined Score | Precision | Diversity | Best Configuration |
|---|---|---|---|---|
| YouTube | 0.744 | 0.860 | 0.655 | Emb: 128, Candidates: 100, K: 5 |
| Hybrid | 0.688 | 0.524 | 1.000 | Candidates: 50, K: 5, CF: 0.2 |
| Netflix | 0.625 | 0.542 | 0.738 | Emb: 64, K: 5, Foundation: 0.3 |
Technology Stack:
| Category | Technologies |
|---|---|
| Deep Learning | PyTorch, Transformers, Two-Tower Networks |
| Vector Search | FAISS (Approximate Nearest Neighbor) |
| Embeddings | Sentence Transformers, Custom Embeddings |
| Interactive UI | Gradio Web Applications |
| Data Processing | Pandas, NumPy, Scikit-learn |
Key Achievements:
- 108 Hyperparameter Configurations tested via systematic Grid Search
- 3 Complete Recommendation Systems built from scratch (YouTube, Netflix, Hybrid)
- Perfect Diversity Score (1.000) achieved with Hybrid system at K=5
- Enterprise-Grade Data Models with 50,000+ synthetic interactions
- Interactive Exploration Apps on ports 7860, 7861, 7862
Key Research Findings:
- K=5 consistently outperforms K=10 and K=20 across all systems
- Candidate pool size (50 vs 200) has minimal impact on results
- 128-dim embeddings provide best precision/diversity balance
- Hybrid approach achieves maximum diversity through combined architecture
Core Competencies¶
Infrastructure & DevOps¶
- Container Orchestration: Docker Compose, Kubernetes (StatefulSets, Deployments, Services, Ingress)
- Event Streaming: Apache Kafka for event-driven architectures
- Storage Solutions: MinIO S3-compatible storage, CDN integration
- Monitoring & Observability: Prometheus, Grafana, Alertmanager, Loki + Promtail
- CI/CD Pipelines: GitHub Actions workflows for automated testing and deployment
- Infrastructure as Code: Terraform configurations
AI & Machine Learning¶
- Multimodal AI Processing:
- Text/NLP: spaCy, Hugging Face Transformers, entity extraction, topic modeling
- Computer Vision: CLIP embeddings, scene detection, object recognition, video frame analysis
- Audio Processing: Whisper transcription, speaker diarization, audio feature extraction
-
Vector Search: pgvector for semantic similarity search across modalities
-
MLOps & Model Management:
- Automated ML pipeline orchestration
- Model registry with versioning
- Performance monitoring and drift detection
-
Automated retraining workflows
-
Retrieval-Augmented Generation (RAG):
- Hybrid retrieval (dense vector + sparse BM25)
- Cross-encoder reranking
- Multi-provider LLM fallback chains
- Production caching strategies
Database Architecture¶
- Relational: PostgreSQL 16 with pgvector extension for vector similarity search
- NoSQL: MongoDB 7.0 for flexible document storage
- Caching: Redis 7+ for high-performance caching
- Database Optimization: Indexing strategies, query optimization, connection pooling
Backend Development¶
- Frameworks: NestJS (microservices), FastAPI (API development)
- Languages: TypeScript, Python 3.11+
- API Design: RESTful APIs, OpenAPI 3.0 specifications
- Architecture Patterns: Microservices, event-driven architecture, CQRS
Frontend Development¶
- Frameworks: Next.js 14 (SSR, SSG), React 18
- Build Tools: Vite, Webpack
- State Management: Context API, server components
- Streaming: Video.js player integration, adaptive bitrate streaming
Professional Experience¶
Software Developer & AI Specialist¶
A Leading ICT Solutions Provider | Current Position
Working at a leading ICT solutions provider specializing in: - Media convergence technologies for Media & Broadcast Industry - E-commerce solutions and enterprise applications - AI-powered systems for enhanced enterprise efficiency
Key Achievements:
- Architected and deployed production-grade media platform with comprehensive AdCP integration
- Implemented multimodal AI extraction layer processing 40K+ documents with NLP, vision, and audio analysis
- Built enterprise RAG system with 75%+ cost reduction through intelligent caching
- Deployed MLOps platform with automated model training, registry, and CI/CD pipelines
- Created comprehensive documentation (350+ pages) with architectural diagrams and deployment guides
Education & Research¶
Master of Science (MSc) in Physics Bandung Institute of Technology, Indonesia
Learn more about my education →
Research Interests¶
- Artificial Intelligence & Machine Learning
- Computer Vision & Multimodal AI
- Natural Language Processing
- Medical Image Analysis
- Deep Learning Applications
- IoT & Microcontroller Systems
- MLOps & Production AI Systems
Personal & Research Projects¶
In addition to enterprise projects, I maintain a portfolio of personal and research projects:
- NEW Recommendation Systems Research - YouTube, Netflix & Hybrid architectures with Grid Search optimization
- Palm Tree Detection Web App - Computer vision for agricultural monitoring
- ForceX AI Chat - Chatbot using Mistral 7B
- Pneumonia Detection System - Medical image analysis
- getSensData - Real-time health monitoring
- OCR IT-09 - Automated data reading
Publications¶
My research has been published in various scientific journals and conferences.
Learn more about my publications →
Contact¶
Feel free to reach out for collaborations, consultations, or inquiries about AI, machine learning, and technology solutions.
- Email: robiriu@gmail.com
- GitHub: github.com/robiriu and other private company repositories
- LinkedIn: LinkedIn Profile